(Un)Conventional Monetary and Fiscal Policy

Jing Cynthia Wu Notre Dame and NBER Yinxi Xie Bank of Canada

COVID-19 responses

Fed

doubled its balance sheet to \$9 trillion

Treasury

- Paycheck Protection Program: \$800 billion
- Economic Impact Payments: \$800 billion

How do we compare all the emergency monetary and fiscal policy?

A Tractable NK Model

Features an IS and a Phillips curve

- Constrained and unconstrained HH
- Segmented Financial Market: short and long term bonds
- ► Financial intermediary: maturity transformation + leverage constraint

Policy

- 1. Conventional MP
- 2. QE: central bank's holding of long-term bonds
- 3. Lump-sum transfer: to constrained HH
- **4**. G

Main Results

- 1. QE and tax-financed fiscal policy have the same aggregate implications
- 2. Conventional monetary policy is more inflationary than other policies
- 3. QE and transfers have redistribution effects, but not G or conventional MP
- 4. Ricardian equivalence breaks Fiscal policy is more stimulative when tax financed than when debt financed
- 5. We also study optimal policy coordination


Outline

1. Empirics-Theory Discrepancies

2. Linear Model and Its Properties

3. Full Model

Discrepancy 1: Balance Sheet Policy

- Empirics:
 - focus on the central bank's balance sheet
 - argue QE has been expansionary
- **Theory**:
 - should focus on the joint balance sheet
 - e.g., Gertler and Karadi (2011), Carlstrom et al. (2017), Sims and Wu (2021)
 - balance sheet policy since the GR would have been contractionary

▶ Lemma 1

Discrepancy 1: Balance Sheet Policy

Empirics:

- focus on the central bank's balance sheet
- argue QE has been expansionary
- Theory:
 - should focus on the joint balance sheet
 - e.g., Gertler and Karadi (2011), Carlstrom et al. (2017), Sims and Wu (2021)
 - balance sheet policy since the GR would have been contractionary

▶ Lemma 1

Linear Model

Discrepancy 1

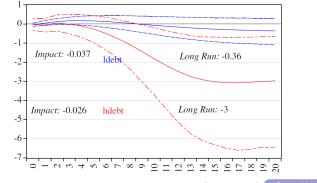
Questions

- Does the empirical literature miss the dominant piece?
- Or does rapid debt growth by the Treasury not matter?

Discrepancy 2: Fiscal Multiplier

Empirics: The estimates of the fiscal multiplier display a wide range

Method/Sample	Multipliers	Comments
A: Time series analysis		
Updated implementation of Blanchard		The tax response is positive for the
and Perotti (2002) identified SVAR		1939Q1-2015Q4 period, but is essen-
1939Q1-2015Q4	0.6 to 0.8	tially 0 for the later periods.
1947Q1-2015Q4	0.6 to 0.7	
Military news shocks, local projections		Tax response is positive for
Ramey and Zubairy (2018) military news		1939Q1–2015Q4 period.
1889Q1-2015Q4	0.6 to 0.8	SE from 0.04 to 0.06
1939Q1-2015Q4	0.7 to 0.8	SE from 0.05 to 0.1
1947Q1-2015Q4	0.5 to 0.7	SE from 0.15 to 0.2
Ben Zeev and Pappa (2017) news,		
1947Q1–2007Q4 ^a	1.1 to 2	SE from 0.6 to 1
Hall (2019), Barro and Redlick (2011)-		The Barro–Redlick analysis nets out
based on regressions using annual defense		effects of changes in tax rates.
spending.	0.6 to 0.7	
Mountford and Uhlig (2009), SVAR		Deficit-financed increase in govern-
with sign restrictions	0.65	ment spending.
Iltzetzki, Mendoza, and Végh (2013), Blanchard–Perotti identification in SVAR,		
quarterly data, 1960–2007, 44 countries		
high-income countries	0.3 to 0.7	
Corsetti, Meier, and Müller (2012)	0.7	Based on unconditional model result
		reported in their Figure 1.
Leigh et al. (2010), Guajardo, Leigh, and		
Pescatori (2014), 17 OECD countries,		
1978-2009, narrative method identification of		
spending-based fiscal consolidations	0.3	
Alesina, Favero, and Giavazzi (forthcoming).		
Narrative analysis of austerity plans, 16 OECD		
economies from 1978_9014	0.3	


Mostly between 0.3 and 0.8: Table 1 of Ramey's (JEP 2019)

Wu (Notre Dame & NBER) and Xie (Bank of Canada)

Linear Model

Discrepancy 2

Empirics: The fiscal multiplier decreases with the debt-to-GDP ratio.

Source: Figure 8 of Ilzetzki, Mendoza and Végh (JME 2013) Proposition 4

Theory: a constant multiplier

Discrepancy 3: Transfers

Theory: transfers are neutral

COVID-19 emergency fiscal programs have no consequences?!

Empirics:

- Fiscal transfers stimulate aggregate demand Proposition 1
 Parker et al. (AER 2013), Parker et al. (NBER wp 2022)
- Constrained households increase their consumption more Proposition 3 Broda and Parker (JME 2014)

Outline

1. Empirics-Theory Discrepancies

2. Linear Model and Its Properties

3. Full Model

Model Structure

1. Unconstrained (standard) household:

save via one-period deposits + pay taxes

2. Constrained household:

issue long-term bonds to finance consumption $+\ {\rm receive}\ {\rm transfers}$

3. Financial intermediary:

maturity transformation + leverage constraint

- 4. Firms: Calvo sticky price
- 5. Central bank: QE + conventional MP
- 6. Government:
 - transfers to constrained HH + G
 - tax unconstrained HH or issue long-term debt

► Full model

A Tractable NK Model

$$IS: \qquad \hat{y}_t = \mathbb{E}_t \, \hat{y}_{t+1} - \frac{\vartheta}{\sigma} (\hat{i}_t - \mathbb{E}_t \, \hat{\pi}_{t+1})$$

$$PC: \qquad \hat{\pi}_t = \beta \mathbb{E}_t \hat{\pi}_{t+1} + \gamma \zeta \hat{y}_t$$

Standard text-book model hat: log deviation from the steady state σ, β, γ, ζ: standard parameters ϑ: steady-state share of the unconstrained household's consumption in output

1

A Tractable NK Model

$$IS: \qquad \hat{y}_{t} = \mathbb{E}_{t} \, \hat{y}_{t+1} - \frac{\vartheta}{\sigma} (\hat{i}_{t} - \mathbb{E}_{t} \, \hat{\pi}_{t+1}) \\ + \left[\widehat{qe}_{t} + \eta(\hat{\tau}_{t}^{C} + \hat{g}_{t}) \right] - \mathbb{E}_{t} \left[\widehat{qe}_{t+1} + \eta(\hat{\tau}_{t+1}^{C} + \hat{g}_{t+1}) \right] \\ PC: \qquad \hat{\pi}_{t} = \beta \mathbb{E}_{t} \, \hat{\pi}_{t+1} + \gamma \zeta \hat{y}_{t} - \frac{\gamma \sigma}{\vartheta} \left[\widehat{qe}_{t} + \eta(\hat{\tau}_{t}^{C} + \hat{g}_{t}) \right]$$

Blue: additional policy instruments

 $\widehat{qe}_t,\ \widehat{\tau}_t^C,\ \widehat{g}_t:$ deviation relative to steady-state output

QE: relaxes the financial intermediary's leverage constraint

- ▶ Transfers: to the constrained household, increase their consumption
- \rightarrow stimulates aggregate demand
- ▶ $0 \le \eta \le 1$: fraction of fiscal policy financed by lump-sum taxes

Proposition 1: QE vs. Fiscal

Proposition

The effects of QE, government expenditures, and lump-sum fiscal transfers on output and inflation are the same when fiscal policy is fully tax financed.

When $\eta=1$

$$\begin{split} \hat{y}_t &= \mathbb{E}_t \, \hat{y}_{t+1} - \frac{\vartheta}{\sigma} (\hat{t}_t - \mathbb{E}_t \, \hat{\pi}_{t+1}) \\ &+ \left[\widehat{qe}_t + \eta (\hat{\tau}_t^C + \hat{g}_t) \right] - \mathbb{E}_t \left[\widehat{qe}_{t+1} + \eta (\hat{\tau}_{t+1}^C + \hat{g}_{t+1}) \right] \\ \hat{\pi}_t &= \beta \, \mathbb{E}_t \, \hat{\pi}_{t+1} + \gamma \zeta \hat{y}_t - \frac{\gamma \sigma}{\vartheta} \left[\widehat{qe}_t + \eta (\hat{\tau}_t^C + \hat{g}_t) \right] \end{split}$$

All of them affect both supply and demand

Proposition 1: QE vs. Fiscal

Proposition

The effects of QE, government expenditures, and lump-sum fiscal transfers on output and inflation are the same when fiscal policy is fully tax financed.

When $\eta = 1$

$$\begin{aligned} \hat{y}_t &= \mathbb{E}_t \, \hat{y}_{t+1} - \frac{\vartheta}{\sigma} (\hat{t}_t - \mathbb{E}_t \, \hat{\pi}_{t+1}) \\ &+ \left[\widehat{qe}_t + \eta (\hat{\tau}_t^C + \hat{g}_t) \right] - \mathbb{E}_t \left[\widehat{qe}_{t+1} + \eta (\hat{\tau}_{t+1}^C + \hat{g}_{t+1}) \right] \\ \hat{\pi}_t &= \beta \, \mathbb{E}_t \, \hat{\pi}_{t+1} + \gamma \zeta \hat{y}_t - \frac{\gamma \sigma}{\vartheta} \left[\widehat{qe}_t + \eta (\hat{\tau}_t^C + \hat{g}_t) \right] \end{aligned}$$

All of them affect both supply and demand

Proposition 2: Inflation

Proposition

To provide the same amount of stimulus, conventional monetary policy is more inflationary than QE and tax-financed fiscal policy.

Consistent with the literature

- Comparison between conventional MP and QE Sims, Wu and Zhang (*ReStat* forthcoming)
- Empirical literature: fiscal policy is not that inflationary Nakamura and Steinsson (2014), Pennings (2021), Jørgensen and Ravn (2022), and Liu and Xie (2022)

Proposition 2: Inflation

Proposition

To provide the same amount of stimulus, conventional monetary policy is more inflationary than QE and tax-financed fiscal policy.

Consistent with the literature

- Comparison between conventional MP and QE Sims, Wu and Zhang (*ReStat* forthcoming)
- Empirical literature: fiscal policy is not that inflationary Nakamura and Steinsson (2014), Pennings (2021), Jørgensen and Ravn (2022), and Liu and Xie (2022)

Proposition 2

Why is conventional MP different?

- All policy tools enter the IS curve
- All but conventional MP also enter PC, which puts downward pressure on inflation

$$\hat{\pi}_t = \beta \mathbb{E}_t \, \hat{\pi}_{t+1} + \gamma \zeta \hat{y}_t - \frac{\gamma \sigma}{\vartheta} \left[\widehat{q e}_t + \eta (\hat{\tau}_t^C + \hat{g}_t) \right]$$

Why do they put downward pressure on π ?

- They crowd out consumption of unconstrained household
- ▶ HH supplies more labor → puts downward pressure on wage

Proposition 2

Why is conventional MP different?

- All policy tools enter the IS curve
- All but conventional MP also enter PC, which puts downward pressure on inflation

$$\hat{\pi}_t = \beta \mathbb{E}_t \, \hat{\pi}_{t+1} + \gamma \zeta \hat{y}_t - \frac{\gamma \sigma}{\vartheta} \left[\widehat{q} \hat{e}_t + \eta (\hat{\tau}_t^C + \hat{g}_t) \right]$$

Why do they put downward pressure on π ?

- They crowd out consumption of unconstrained household
- ▶ HH supplies more labor \rightarrow puts downward pressure on wage

2021–2022 Inflation Surge

Logical order of Fed's tightening

unwind balance sheet and then raise the policy rate

In response to persistently high inflation,

- raised policy rate from [0, 0.25] to [3.75, 4]
- barely winded down balance sheet

Model prediction: tightening the policy rate is more effective at combating inflation.

Fiscal authority

- provided another round of stimulus to help alleviate increased cost of living
- ▶ in late 2022, 17 states sent out inflation-relief checks

Model prediction: this policy combination can lower inflation without large contraction.

2021–2022 Inflation Surge

Logical order of Fed's tightening

unwind balance sheet and then raise the policy rate

In response to persistently high inflation,

- raised policy rate from [0, 0.25] to [3.75, 4]
- barely winded down balance sheet

Model prediction: tightening the policy rate is more effective at combating inflation.

Fiscal authority

- provided another round of stimulus to help alleviate increased cost of living
- ▶ in late 2022, 17 states sent out inflation-relief checks

Model prediction: this policy combination can lower inflation without large contraction.

Proposition 3: Redistribution

Proposition

- QE and tax-financed transfers redistribute wealth from the unconstrained household to the constrained household
- The policy rate and tax-financed government spending do not have a redistribution effect

Why

- QE and transfers relax the constrained HH's BC
- Policy rate and government spending stimulate aggregate demand

Discrepancy 3: transfers 🕩 discrepancy

- Proposition 1: transfers are not neutral
- Proposition 3: transfers redistribute wealth from unconstrained to constrained HH

Proposition 3: Redistribution

Proposition

- QE and tax-financed transfers redistribute wealth from the unconstrained household to the constrained household
- The policy rate and tax-financed government spending do not have a redistribution effect

Why

- QE and transfers relax the constrained HH's BC
- Policy rate and government spending stimulate aggregate demand

Discrepancy 3: transfers () discrepancy

- Proposition 1: transfers are not neutral
- Proposition 3: transfers redistribute wealth from unconstrained to constrained HH

Proposition 3: Redistribution

Proposition

- QE and tax-financed transfers redistribute wealth from the unconstrained household to the constrained household
- The policy rate and tax-financed government spending do not have a redistribution effect

Why

- QE and transfers relax the constrained HH's BC
- Policy rate and government spending stimulate aggregate demand

Discrepancy 3: transfers • discrepancy

- Proposition 1: transfers are not neutral
- Proposition 3: transfers redistribute wealth from unconstrained to constrained HH

Lemma 1: Debt Finance

Lemma

The effects of government expenditures and lump-sum fiscal transfers on aggregate output and inflation are neutral when they are fully debt financed.

When $\eta = 0$

$$\begin{split} \hat{y}_t &= \mathbb{E}_t \, \hat{y}_{t+1} - \frac{\vartheta}{\sigma} (\hat{t}_t - \mathbb{E}_t \, \hat{\pi}_{t+1}) \\ &+ \left[\widehat{qe}_t + \eta (\hat{\tau}_t^C + \hat{g}_t) \right] - \mathbb{E}_t \left[\widehat{qe}_{t+1} + \eta (\hat{\tau}_{t+1}^C + \hat{g}_{t+1}) \right] \\ \hat{\pi}_t &= \beta \, \mathbb{E}_t \, \hat{\pi}_{t+1} + \gamma \zeta \hat{y}_t - \frac{\gamma \sigma}{\vartheta} \left[\widehat{qe}_t + \eta (\hat{\tau}_t^C + \hat{g}_t) \right] \end{split}$$

Lemma 1: Debt Finance

Lemma

The effects of government expenditures and lump-sum fiscal transfers on aggregate output and inflation are neutral when they are fully debt financed.

When $\eta = 0$

$$\begin{split} \hat{y}_{t} &= \mathbb{E}_{t} \, \hat{y}_{t+1} - \frac{\vartheta}{\sigma} (\hat{i}_{t} - \mathbb{E}_{t} \, \hat{\pi}_{t+1}) \\ &+ \left[\widehat{q} \hat{e}_{t} + \eta (\hat{\tau}_{t}^{C} + \hat{g}_{t}) \right] - \mathbb{E}_{t} \left[\widehat{q} \hat{e}_{t+1} + \eta (\hat{\tau}_{t+1}^{C} + \hat{g}_{t+1}) \right] \\ \hat{\pi}_{t} &= \beta \, \mathbb{E}_{t} \, \hat{\pi}_{t+1} + \gamma \zeta \hat{y}_{t} - \frac{\gamma \sigma}{\vartheta} \left[\widehat{q} \hat{e}_{t} + \eta (\hat{\tau}_{t}^{C} + \hat{g}_{t}) \right] \end{split}$$

Lemma 1

Why

- Transfers and G are stimulative
- Issuing long term bonds is contractionary

Two effects cancel out

Discrepancy 1: balance sheet policy • discrepancy

- Contractionary effects of issuing debt = expansionary effects of G and transfers
- CB's balance sheet (QE) is relevant
- Supports the practice in empirical literature

Proposition 4: Ricardian Equivalence

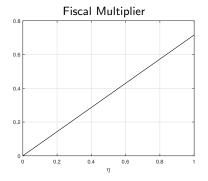
Proposition

Ricardian equivalence breaks: when a larger fraction of fiscal policy is tax financed, government expenditures or transfers are more stimulative.

$$\begin{aligned} \hat{y}_t &= \mathbb{E}_t \, \hat{y}_{t+1} - \frac{\vartheta}{\sigma} (\hat{i}_t - \mathbb{E}_t \, \hat{\pi}_{t+1}) \\ &+ \left[\widehat{qe}_t + \eta (\hat{\tau}_t^C + \hat{g}_t) \right] - \mathbb{E}_t \left[\widehat{qe}_{t+1} + \eta (\hat{\tau}_{t+1}^C + \hat{g}_{t+1}) \right] \end{aligned}$$

Proposition 4: Ricardian Equivalence

Proposition


Ricardian equivalence breaks: when a larger fraction of fiscal policy is tax financed, government expenditures or transfers are more stimulative.

$$\begin{split} \hat{y}_t &= & \mathbb{E}_t \, \hat{y}_{t+1} - \frac{\vartheta}{\sigma} (\hat{\hat{t}}_t - \mathbb{E}_t \, \hat{\pi}_{t+1}) \\ &+ \left[\widehat{q e}_t + \eta (\hat{\tau}_t^{\mathcal{C}} + \hat{g}_t) \right] - \mathbb{E}_t \left[\widehat{q e}_{t+1} + \eta (\hat{\tau}_{t+1}^{\mathcal{C}} + \hat{g}_{t+1}) \right] \end{split}$$

Proposition 4

Discrepancy 2: fiscal multiplier • discrepancy

- ▶ Model implied multiplier $[0, 0.72] \leftrightarrow [0.3, 0.8]$ in the data
- It increases with $\eta (1 \eta \text{ proxy debt-to-GDP ratio})$
- Both consistent with empirical literature

Outline

1. Empirics-Theory Discrepancies

2. Linear Model and Its Properties

3. Full Model

Model Structure

- 1. Unconstrained (standard) household
- 2. Constrained household
- 3. Financial intermediary
- 4. Firms
- 5. Central bank
- 6. Government

Full Model

Unconstrained Household

Utility

$$\mathbb{E}_{0}\sum_{t=0}^{\infty}\beta^{t}\left[\frac{C_{t}^{1-\sigma}-1}{1-\sigma}-\psi\frac{L_{t}^{1+\chi}}{1+\chi}\right]$$

Budget constraint

$$P_t C_t + D_t = W_t L_t + I_{t-1} D_{t-1} + P_t T_t^U$$

Dt: one-period deposits; T^U_t includes dividends, transfers, and taxes
 FOCs

$$\psi L_t^{\chi} = C_t^{-\sigma} w_t$$
$$C_t^{-\sigma} = \beta I_t \mathbb{E}_t \left[\frac{C_{t+1}^{-\sigma}}{\Pi_{t+1}} \right]$$

Wu (Notre Dame & NBER) and Xie (Bank of Canada)

Constrained Household

- Does not work: for tractability only
- Less patient than unconstrained HH: makes it the borrower
- Finances its consumption by issuing long term bonds

"Constrained"

- its borrowing is limited due to the leverage constraint of the financial intermediary
- it behaves similarly to the hand-to-mouth household in the TANK model although they are structured differently

Linear Model

Full Model

Constrained Household

Utility

$$\mathbb{E}_{0}\sum_{t=0}^{\infty}\left(\boldsymbol{\beta}^{C}\right)^{t}\left[\frac{\left(\boldsymbol{C}_{t}^{C}\right)^{1-\sigma}-1}{1-\sigma}\right]$$

 $\beta^{\textit{C}} < \beta:$ makes constrained HH borrower

Budget constraint Perpetuity

$$P_{t}C_{t}^{C} + B_{t-1}^{C} = Q_{t}\left(B_{t}^{C} - \kappa B_{t-1}^{C}\right) + P_{t}X_{t}^{C} + P_{t}T_{t}^{C}$$

 B_{t-1}^{C} : coupon; $Q_t \left(B_t^{C} - \kappa B_{t-1}^{C} \right)$: new issue; T_t^{C} : government transfer **FOC**

$$\left(C_{t}^{C}\right)^{-\sigma} = \beta^{C} \mathbb{E}_{t} \left[\frac{\left(C_{t+1}^{C}\right)^{-\sigma} R_{t+1}}{\Pi_{t+1}}\right]$$

 R_{t+1} : holding period return

Financial Intermediary

- FI lives for one period: Sims, Wu, and Zhang (ReStat forthcoming)
- Balance sheet condition

$$Q_t B_t^{FI} + R E_t^{FI} = D_t^{FI} + P_t X_t^{FI}$$

where $P_t X_t^{FI}$ includes new equity & outstanding from previous intermediary

$$P_t X_t^{FI} = P_t \bar{X}^{FI} + \kappa Q_t B_{t-1}^{FI}$$

Leverage constraint • Optimal Policy

$$Q_t B_t^{FI} \leq \Theta P_t \bar{X}^{FI}$$

Dividends

$$P_{t+1}\Phi_{t+1}^{FI} = (R_{t+1} - I_t) Q_t B_t^{FI} + (I_t^{RE} - I_t) RE_t^{FI} + I_t P_t X_t^{FI}$$

Financial Intermediary

 FI maximizes the dividends discounted by the unconstrained HH's SDF subject to the leverage constraint

FOCs

$$\mathbb{E}_{t} \Lambda_{t,t+1} \left(R_{t+1} - I_{t} \right) = \Omega_{t}$$
$$\mathbb{E}_{t} \Lambda_{t,t+1} \left(I_{t}^{RE} - I_{t} \right) = 0$$

 Ω_t : the Lagrange multiplier on the leverage constraint

Central Bank

Taylor rule

$$\ln I_t - \ln \bar{I} = \phi_{\pi} (\ln \Pi_t - \ln \bar{\Pi}) + \phi_y (\ln Y_t - \ln \bar{Y}) + \delta_{i,t}$$

$$Q_t B_t^{CB} = RE_t$$

Define QE

$$QE_t = Q_t b_t^{CB}$$

where $b_t^{CB} \equiv B_t^{CB}/P_t$

Return surplus

Linear Model

Fiscal Authority

Budget constraint

$$P_t T_t^{C} + P_t G_t + B_{t-1}^{G} = Q_t (B_t^{G} - \kappa B_{t-1}^{G}) + P_t T_t^{G}$$

 B_{t-1}^{G} : coupon; $Q_t \left(B_t^G - \kappa B_{t-1}^G \right)$: new issue Perpetuity

 $T_t^G \equiv T_t + \xi Q_{t-1} b_{t-1}^G$

 \succ T_t : finance fiscal stimulus

 $T_t \equiv \eta (T_t^C + G_t)$

ξQ_{t-1}b^G_{t-1}: fiscal responsibility; similar to Bianchi and Melosi (JME 2019)
 To guarantee determinancy:

$$\frac{1}{\beta^{\mathsf{C}}}-1<\xi<\frac{1}{\beta^{\mathsf{C}}}+1$$

Linear Model

Fiscal Authority

Budget constraint

$$P_{t}T_{t}^{C} + P_{t}G_{t} + B_{t-1}^{G} = Q_{t}(B_{t}^{G} - \kappa B_{t-1}^{G}) + P_{t}T_{t}^{G}$$

 B_{t-1}^{G} : coupon; $Q_t \left(B_t^{G} - \kappa B_{t-1}^{G} \right)$: new issue Perpetuity Taxes

Taxes

$$T_t^G \equiv T_t + \xi Q_{t-1} b_{t-1}^G$$

T_t : finance fiscal stimulus

$$T_t \equiv \eta (T_t^C + G_t)$$

ξQ_{t-1}b^G_{t-1}: fiscal responsibility; similar to Bianchi and Melosi (JME 2019)
 To guarantee determinancy:

$$rac{1}{eta^{\mathsf{C}}} - 1 < \xi < rac{1}{eta^{\mathsf{C}}} + 1$$

Equilibrium

Goods market

$$Y_t = C_t + C_t^C + G_t$$

Asset market

$$B_t^G + B_t^C = B_t^{FI} + B_t^{CB}$$

Convenience assumption of transfer from unconstrained to constrained HH yields

$$C_t^C = \Theta \bar{X}^{FI} + QE_t + T_t^C - (1 - \eta) \left[T_t^C + G_t \right]$$

Constrained HH consumption depends on QE, transfers, and G

The system has 24 equations and 24 variables and can be reduced

QE vs. G vs. Transfers

Constrained HH consumption ($\eta = 1$):

$$C_t^{C} = \Theta \bar{X}^{FI} + QE_t + T_t^{C} - (1 - \eta) \left[T_t^{C} + G_t \right]$$

- QE allows it to increase consumption by issuing more bonds
- Transfers also increase consumption
- Both QE and transfers have a redistribution effect

Aggregate resource constraint

$$Y_t = C_t + \Theta \bar{X}^{FI} + QE_t + T_t^C + G_t$$

- G enters the same as QE and transfers
- But G does not affect constrained HH

They have the same aggregate effects but different redistribution consequences

QE vs. G vs. Transfers

Constrained HH consumption ($\eta = 1$):

$$\boldsymbol{C_t^{C}} = \boldsymbol{\Theta} \boldsymbol{\bar{X}^{Fl}} + \boldsymbol{Q} \boldsymbol{E_t} + \boldsymbol{T_t^{C}} - (1 - \eta) \left[\boldsymbol{T_t^{C}} + \boldsymbol{G_t} \right]$$

- QE allows it to increase consumption by issuing more bonds
- Transfers also increase consumption
- Both QE and transfers have a redistribution effect

Aggregate resource constraint

$$Y_t = C_t + \Theta \bar{X}^{FI} + QE_t + T_t^C + G_t$$

- G enters the same as QE and transfers
- But G does not affect constrained HH

They have the same aggregate effects but different redistribution consequences

Breakdown of the Ricardian Equivalence

The aggregate resource constraint ($\eta = 0$):

$$Y_t = C_t + \Theta \bar{X}^{FI} + QE_t$$

- G and transfers drop out
- Debt-financed fiscal policy has no aggregate impact

Why

- Fiscal policy itself is stimulative
- Issuing bonds is contractionary
 - Total bond demand is exogenous (leverage constraint + QE)
 - Gov bonds crowd out private bonds issued by constrained HH
 - Lower their consumption

Breakdown of the Ricardian Equivalence

The aggregate resource constraint ($\eta = 0$):

$$Y_t = C_t + \Theta \bar{X}^{FI} + QE_t$$

- G and transfers drop out
- Debt-financed fiscal policy has no aggregate impact

Why

- Fiscal policy itself is stimulative
- Issuing bonds is contractionary
 - Total bond demand is exogenous (leverage constraint + QE)
 - Gov bonds crowd out private bonds issued by constrained HH
 - Lower their consumption

Conclusion

We propose a tractable model featuring four types of government policy

- 1. QE and tax-financed fiscal policy have the same aggregate effects
- 2. Conventional monetary policy is more inflationary
- 3. QE and transfers have redistribution effects
- 4. Ricardian equivalence breaks
- 5. We discuss implications for optimal coordinated policies

Our model reconciles with three empirics-theory discrepancies

- 1. Balance sheet policy should be summarized by central bank's bond holding
- 2. Fiscal multiplier depends on debt-to-GDP ratio
- 3. Transfers are stimulative and have redistribution consequences

Conclusion

We propose a tractable model featuring four types of government policy

- 1. QE and tax-financed fiscal policy have the same aggregate effects
- 2. Conventional monetary policy is more inflationary
- 3. QE and transfers have redistribution effects
- 4. Ricardian equivalence breaks
- 5. We discuss implications for optimal coordinated policies

Our model reconciles with three empirics-theory discrepancies

- 1. Balance sheet policy should be summarized by central bank's bond holding
- 2. Fiscal multiplier depends on debt-to-GDP ratio
- 3. Transfers are stimulative and have redistribution consequences

4. Optimal Policy Coordination

Optimal Policy Coordination

The First-Best Efficient Allocation

A social planner maximizes

$$W = \mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \left\{ \left[\frac{C_t^{1-\sigma} - 1}{1-\sigma} - \psi \frac{L_t^{1+\chi}}{1+\chi} \right] + \delta \frac{(C_t^C)^{1-\sigma} - 1}{1-\sigma} \right\}$$

subject to

$$C_t + C_t^C + G_t = A_t L_t$$

FOCs

$$C_t^{-\sigma} = \delta(C_t^C)^{-\sigma}$$
$$\frac{\psi L_t^{\chi}}{C_t^{-\sigma}} = A_t$$
$$G_t = 0$$

Efficient output

$$\hat{y}_t^e = \frac{1+\chi}{\sigma+\chi}\hat{a}_t$$

Wu (Notre Dame & NBER) and Xie (Bank of Canada)

Steady State and Flexible-Price Equilibrium

Steady state is efficient

- Standard: government subsidy to correct distortion from monopolistic competition
- New: impose steady state policy instruments to correct financial market distortion

Flexible-price equilibrium (with only \hat{a}_t shock) output

$$\hat{y}^f_t = rac{(1+\chi)(1-z)}{(1-z)\chi+\sigma} \hat{a}_t$$

is only equal to efficient output

$$\hat{y}_t^e = \frac{1+\chi}{\sigma+\chi}\hat{a}_t$$

when $z \equiv \frac{\bar{c}^{c}}{\bar{c} + \bar{c}^{c}} = 0$ because of the financial friction

Dual Stability

Dual stability

 $\hat{\pi}_t = 0 \text{ and } \hat{y}_t = \hat{y}_t^e$

Three shocks

b productivity shock \hat{a}_t , demand shock $\hat{\xi}_t$, and credit shock $\hat{\theta}_t$ **b**

Dual stability requires

$$\widehat{qe}_{t} + \eta \widehat{\tau}_{t}^{C} = \frac{1-z}{\sigma} \left[\zeta \widehat{y}_{t}^{e} - (1+\chi) \widehat{a}_{t} \right] - \mathcal{Q} \widehat{\theta}_{t}$$
$$\widehat{i}_{t} = \frac{\sigma}{1-z} \widehat{\xi}_{t} - \sigma (1-\rho_{s}) \frac{1+\chi}{\chi+\sigma} \widehat{a}_{t}$$

- QE and transfers are isomorphic
- δ doesn't affect optimal policy

Divine Coincidence

Dual stability

$$\widehat{qe}_{t} + \eta \widehat{\tau}_{t}^{C} = \frac{1-z}{\sigma} \left[\zeta \widehat{y}_{t}^{e} - (1+\chi) \widehat{a}_{t} \right] - \mathcal{Q} \widehat{\theta}_{t}$$
$$\widehat{l}_{t} = \frac{\sigma}{1-z} \widehat{\xi}_{t} - \sigma (1-\rho_{s}) \frac{1+\chi}{\chi+\sigma} \widehat{a}_{t}$$

Divine coincidence (DC): CB achieves dual stability with only i_t

- DC holds for $\hat{\xi}_t$ and the policy rate can fully stabilize it
- DC breaks for â_t

because it acts as a cost-push shock

• QE or transfers can fully stabilize credit shock $\hat{\theta}_t$

Optimal Policy Coordination

Triune Stability

Period welfare loss

$$\mathcal{L}_t = \hat{\pi}_t^2 + \lambda_{\mathsf{agg}} (\hat{y}_t - \hat{y}_t^{\mathsf{e}})^2 + \lambda_{\mathsf{disp}} \mathsf{var}(\hat{c}_t^i)$$

Dual stability:

$$\widehat{q}\widehat{e}_{t} + \eta\widehat{\tau}_{t}^{C} = \frac{1-z}{\sigma} \left[\zeta \widehat{y}_{t}^{e} - (1+\chi)\widehat{a}_{t}\right] - \mathcal{Q}\widehat{\theta}_{t}$$
$$\widehat{i}_{t} = \frac{\sigma}{1-z}\widehat{\xi}_{t} - \sigma(1-\rho_{a})\frac{1+\chi}{\chi+\sigma}\widehat{a}_{t}$$

which also imply

$$var(\hat{c}_t^i) = 0$$

Two types of policy can stabilize three types of shocks and achieve three targets

Perpetual Bonds

- Coupons: decay at rate $\kappa \in [0, 1]$
- Total coupon liability at t: B_{t-1}
- New issues: $B_t \kappa B_{t-1}$
- Price for new issues: Q_t ; price for t j issues is $\kappa^j Q_t$
- Total value of all past issues: Q_tB_t
- Holding period return

$$R_t = \frac{1 + \kappa Q_t}{Q_{t-1}}$$

